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This article presents an experimental study of magnetohydrodynamic convection in a
tall vertical slot under the influence of a horizontal magnetic field. The test fluid is an
eutectic sodium potassium Na22K78 alloy with a small Prandtl number of Pr ≈ 0.02.
The experimental setup covers Rayleigh numbers in the range 103 . Ra . 8× 104

and Hartmann numbers 0 < M < 1600. The effect of the magnetic field on the
convective heat transport is determined not only by damping as expected from
Joule dissipation but also, for magnetic fields not too strong, the convective heat
transfer may be considerably enhanced compared to ordinary hydrodynamic (OHD)
flow. Estimates of the isotropy properties of the flow by a four-element temperature
probe demonstrate that the increase in convective heat transport accompanies the
formation of strong local anisotropy of the turbulent eddies in the sense of an
alignment of the main direction of vorticity with the magnetic field. The reduced
three-dimensional nonlinearities in non-isotropic flow favour the formation of large-
scale vortex structures compared to OHD flow, which are more effective for convective
heat transport. Along with the formation of quasi-two-dimensional vortex structures,
temperature fluctuations may be considerably enhanced in a magnetic field that is
not too strong. However, above Hartmann numbers M & 400 the formerly strongly
time-dependent flow suddenly becomes stationary with an extended region of high
convective heat transport at stationary flow. Finally, for very high Hartmann numbers
the convective motion is strongly suppressed and the heat transport is reduced to a
state close to pure heat conduction.

1. Introduction
Buoyancy-driven flow in a tall vertical enclosure is one of the fundamental problems

of convective heat transport with simple well-defined boundary conditions. Moreover,
even in the case of liquid metal, it is of significant importance in many engineering
applications such as liquid metal cooling in power engineering, metallurgical melting
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Figure 1. Geometry of the flow problem investigated.

and solidification processes, e.g. in crystal growth processes. Due to the high electrical
conductivity of liquid metals the flow may be influenced by external magnetic fields.
For instance, magnetohydrodynamic (MHD) flow control can be designed to optimize
production processes. In figure 1 the flow problem under consideration is sketched.
Liquid metal is confined in a rectangular enclosure of width b, length l and height
h and non-slip boundary conditions hold at all walls. The left-hand vertical wall is
heated and the opposite one is cooled so that a temperature difference ∆T and an
associated heat flux q is maintained across the gap, perpendicular to the acceleration
due to gravity g. All the other walls are thermally insulated. A homogeneous magnetic
field B may be imposed in the horizontal direction perpendicular to the applied heat
flux, i.e. the transversal direction.

The geometry of the cavity is characterized by the two aspect ratios A1 = h/b
and A2 = l/b. The buoyant flow of a Newtonian fluid under ordinary hydrody-
namic (OHD) conditions is governed by two independent dimensionless groups. The
Rayleigh number

Ra =
βg∆Tb3

νκ
, (1)

represents the driving force of convection, where β is the thermal expansion coefficient,
g the magnitude of the acceleration due to gravity, ν the kinematic viscosity and
κ = λ/ρcp the thermal diffusivity with the thermal conductivity λ, the density ρ and
the specific heat capacity cp. The Prandtl number

Pr =
ν

κ
(2)

is the ratio of the thermal and the viscous diffusion time and characterizes diffusive
properties of the fluid. The effectivity of the convective heat transport is characterized
by the dimensionless Nusselt number

Nu =
q

q0

(3)

defined as the ratio of the total heat flux q to the conductive heat flux q0 = −λ∆T/b.
If a magnetic field B is imposed, electric currents j are induced by the convective



Magnetohydrodynamic convection in a vertical slot 23

motions and the flow becomes governed by two additional dimensionless parameters:
the magnetic Reynolds number

Rm = µσv0b (4)

and the Chandrasekhar number

Q = M2 =
B2b2σ

ρν
, (5)

which is the square of the Hartmann number M commonly used in MHD duct
flows and in what follows. In these definitions, µ is the magnetic permeability, σ the
electrical conductivity, v0 some characteristic velocity of the fluid produced by the
buoyant forces and B the magnitude of magnetic induction. The magnetic Reynolds
number gives the ratio of the magnetic field induced by the fluid motion to the applied
external magnetic field. The Chandrasekhar number denotes the ratio of the Lorenz
forces F L = j ×B, that are produced by the interaction of the current density j with
the applied magnetic field B, to the viscous forces. Well-known estimates show that
the induced magnetic field may be neglected in the flow configurations discussed here
and either Q or M is the only relevant additional parameter related to the applied
magnetic field.

In MHD flows the electrical properties of walls have a significant influence. They
are combined in a dimensionless form as the wall conductance ratio

c =
σWs

σb
, (6)

where σW is the electrical conductivity of the wall material and s is the thickness of
the wall considered (see e.g. Walker 1981).

Under ordinary hydrodynamic (OHD) conditions the different flow regions in the
parameter space of Rayleigh number and ordinary fluid Prandtl number Pr & 1 are
well established in the literature. For a review see e.g. Gebhart et al. (1988). For very
small Rayleigh numbers a stationary unicellular convective motion is established.
At small enough convective velocities the fluid temperature remains almost uniform
along the height and heat is mainly transported by heat conduction. As the Rayleigh
number is increased convective motions become stronger and the contribution of
convective heat transport is increased. A vertical temperature gradient develops in
the core and a boundary layer type flow develops at the vertical walls. This primary
flow region becomes unstable to either stable multicellular convective patterns or
travelling waves. From the analysis of Vest & Arpaci (1969) and Bergholz (1977) it
is established that, for Prandtl numbers Pr < 12.7, stable multicellular patterns of
‘cat’s eye’ type, called secondary flows occur for Gr > 7880, where Gr = Ra/Pr is
the Grashof number. Other stationary flows (tertiary flows) characterized by regions
of reversed circulation between the secondary cells (see Elder 1965) may follow this
transition but, finally, the flow becomes time-dependent and then turbulent except in
the thin boundary layers at the top and bottom walls.

Along with the flow patterns, the Nusselt number depends on all the parameters
including both aspect ratios. Scaling with the Grashof number may sometimes be
appropriate, but heat transfer correlations derived for ordinary fluids with Pr & 1 are
generally not valid for liquid metals with Prandtl numbers Pr � 1. Nevertheless, only
a few studies of the OHD flow are focused on low Prandtl number fluids. Papailiou &
Lykoudis (1974) investigated turbulent boundary layer flow in mercury (Pr = 0.026)
developing along vertical walls. Gill (1974) treated theoretically the occurrence of
oscillating flow in OHD flow and compared his results with experimental data mainly
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obtained by Hurle, Jackeman & Johnson (1974). Depending on the aspect ratios,
time-dependent flow occurs for Rayleigh numbers of O(103). Hurle et al. (1974) also
reported that a transverse magnetic field may quench the oscillations and steady
convective motion may be obtained at higher Rayleigh numbers than for OHD flow.
Moreover, there is also a significant influence of magnetic field on the convective
heat transport. Emery (1963) showed that in mercury flow the convective heat flux is
significantly reduced by a magnetic field imposed in the horizontal direction parallel
to the heat flux. Similar findings were obtained by Papailiou & Lykoudis (1968) for
a transversal magnetic field. Ozoe & Okada (1989) showed by numerical simulation
and later in an experiment (Okada & Ozoe 1992) that externally applied magnetic
fields in all three directions damp the convective motions in a cubic enclosure.
Diminishing of the convective heat transport was observed to be minimal if the
magnetic field was applied in the transversal direction whereas the highest damping
was obtained for a horizontal magnetic field paralell to the direction of the applied
heat flux. Such a damping effect is easily explained by Joule dissipation arising from
the presence of a current density in the fluid. However, the magnetic field does
not only suppress the flow. Experiments of Fumizawa (1980) have shown that a
transverse magnetic field may under certain conditions also enhance the convective
heat transport compared to the OHD flow. Similar findings have been reported
recently by Burr & Müller (2002) in Rayleigh–Bénard convection with an imposed
horizontal magnetic field. The effect can be explained by an ordering effect of the
magnetic field on the three-dimensional convective vortex motion caused by the non-
isotropic character of the Lorenz forces (see also Sommeria & Moreau 1982 and
Davidson 1995). Namely, vorticity lines tend to become aligned with the magnetic
field and thereby Joule dissipation is considerably reduced. Hence, the flow properties
like the convective heat flux are governed by co-existing mechanisms. On the one
hand the convective velocities and, consequently, the convective heat transfer is
generally reduced by Joule dissipation. On the other hand this damping effect may be
compensated due to suppression of three-dimensional flow structures and favouring of
two-dimensionality. Two-dimensional large-scale coherent vortex structures are very
effective in convective transport. If the formation of two-dimensional flow structures
over-rides the damping effect of Joule dissipation an increase of the convective heat
transfer may be expected. Thus we also address the occurrence of a quasi-two-
dimensional flow at very high Hartmann numbers (see e.g. Sommeria & Moreau 1982
and Burr & Müller 2002) where the flow is two-dimensional in a core region but
not in thin boundary layers at walls perpendicular to the magnetic field (Hartmann
walls).

Both the drastic changes of the flow structure and the control of the heat transfer
are very attractive features and there has recently been a growing interest motivated
by industrial applications mentioned above.

This paper aims to provide new information on the integral heat transfer and flow
characteristics in a broad range of accessible Rayleigh and Hartmann numbers and,
moreover, to link these phenomena to local isotropy properties of the flow in order
to contribute to the understanding of general phenomena in MHD convection. It
is organized as follows: In the next section a brief description of the experimental
setup is given. In § 3 experimental results concerning the integral flow properties
such as heat transfer rates and the transition from stationary to time-dependent flow
evaluated from a systematic test matrix are presented. The specific temporal and
spatial structure of the flow is discussed in a separate subsection. In § 4 the results are
summarized and some conclusions are drawn.
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Figure 2. Vertical cross-section (plane perpendicular to the magnetic field) of the test section
showing some technical details.

2. Experimental setup and performance
The test section provides a vertical gap of width b = 20 mm, height h = 200 mm and

length l = 400 mm (see figure 1). Thus the two aspect ratios defined in § 1 are large,
i.e. A1 = 10 and A2 = 20. A vertical cross-section, showing some technical details,
is given in figure 2. The gap is filled with a test fluid which is an eutectic sodium
potassium alloy Na22K78, with 22% weight sodium and 78% weight potassium.
The temperature-dependent thermophysical properties are calculated for the mean
temperature of the fluid Tm based on fitting curves derived from data taken from
O’Donnel, Papanicolaou & Reed (1989), Lyon (1952) and Foust (1972). The Prandtl
number varies in the range 0.017 < Pr < 0.021 because of the temperature dependence
of the physical properties. The heated and the cooled vertical walls are 20 mm thick
copper plates. Due to the high thermal conductivity of copper compared to NaK
they provide to a best approximation isothermal boundary conditions. All other walls
facing the fluid are 1.5 mm thick stainless steel sheets and are thermally insulated from
the environment. As the thermal conductivity of stainless steel is significantly smaller
than that of the test fluid their influence on the temperature distribution of the fluid
may be neglected. From definition (6) the wall conductance ratios for the copper and
the stainless steel walls are calculated as cCu ≈ 4.5 and css ≈ 0.08. The hot wall is
heated electrically with a maximum power of P ≈ 7200 W giving a maximum heat
flux of q ≈ 8.8 × 104 W m−2 and resulting in Rayleigh numbers up to Ra . 105. In
order to calculate the heat flux q from the measured power of the electrical heating,
three different sources of heat losses have been taken into account. First, there is
heat loss by conduction through the thermal insulation, which was determined by
separate tests for situations with no heat flux across the gap; it is considered in
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Figure 3. Instrumentations of the heat transfer test facility and schematic of the sensing tip of
the four-element temperature probe placed in the centre of the gap. All lengths measures are given
in mm.

the evaluations of q as a functional of the temperature difference between the hot
wall and the temperature of the near environment. The latter was measured by a
separate thermocouple on the copper cover of the facility. Second, there is also heat
conduction through the sidewalls, which can easily be calculated from Fourier’s law
using the temperature difference between the copper plates. Third, there are Ohm’s
losses in the wiring and cold ends of the heater rods which is proportional to the
applied electrical power.

The heat transferred through the liquid layer is removed from the cooled wall by
boiling water in a porous bed consisting of glassbeads of 5 mm in diameter. The
water is kept at boiling temperature by an auxiliary heater and thus the heat is
removed from the wall by the boiling process only and a uniform temperature at the
wall is obtained. The steam is removed from the top and condensed in an external
water-cooled atmospheric condenser. The condensed water is preheated and fed back
by pipes at the lower side of the cooler.

The test section is placed into the bore of a superconducting magnet which can
generate a horizontal magnetic field of up to 3.5 T and which is constant to a spatial
accuracy better than ±4%. In this investigation tests were conducted only in the
range of Hartmann numbers 0 < M < 1600.

In figure 3 the instrumentations of the test section are sketched and their precise
positions are given. Five Cu–CuNi thermocouples are embedded in each copper plate
and are positioned at a distance 1 mm from the fluid–wall interface. The temperature
difference across the layer ∆T = Th − Tc and the mean temperature of the fluid
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Tm = (Th + Tc)/2 are evaluated from the five temperatures Ti,j in each wall as a
spatial and temporal average. Here, Th and Tc denote the mean temperatures of
the heated and the cooled wall, respectively (see figure 1). Physical properties as
well as characteristic numbers are always evaluated from temporal mean values and
therefore the averaging is not mentioned further. Temporal mean values are denoted
by an overbar whereas fluctuating parts are denoted by a prime. The local time-
dependent properties in the centre of the liquid metal layer, between the thermocouples
TS,l and TS,r , are measured by using a four-element temperature probe which can
sense the fluctuating parts of temperature T ′P and the local temperature gradient
∇T ′P = (∂xT

′
P , ∂yT

′
P , ∂zT

′
P ). The latter measurement is performed by a non-coplanar

arrangement of four shielded Ni–CrNi thermocouples each of 0.25 mm diameter which
protrude from an insulating ceramics tube with a diameter of 2 mm. The geometry of
the probe is sketched in the upper part of figure 3. The lateral distance between the
two long and the two short thermocouples is 2 mm whereas the long thermocouples
are 1.4 mm longer than the shorter ones. For a more detailed description of the
probe geometry see Burr & Müller (2001). Here, the four thermocouples have been
connected to the data acquisition system in such a way that one element measures
the temperature of the fluid with reference to an ice point whereas the three others
are connected in reference to the first one to sense directly the temperature difference.
The gradient vector thus obtained in a coordinate system defined by the thermo-
couple positions may be transferred into the coordinate system of the test section by
vector transformation. This arrangement allows a high amplification of the gradient
signals and produces much less noise than calculating the temperature gradients from
independently measured temperature values.

The definition of isotropy coefficients

Aij =
(∂iTP )′2

(∂jTP )′2
, i, j = x, y, z, (7)

allows an objective estimate of the local isotropy properties of the time-dependent
motions, where (∂iTP )′2 is the variance of the temperature gradient in the i-direction.
If all coefficients approach unity, the flow may be called locally isotropic. If i refers to
the x-direction the two transversal coefficients Axy and Axz indicate non-isotropy in
the direction of the magnetic field in terms of weaker fluctuations in the direction of
the magnetic field. It is reasonable to evaluate the trend towards a two-dimensional
velocity field from decreasing values of the transversal isotropy coefficients. However,
the flow still may be isotropic in the vertical plane perpendicular to the magnetic field
which is indicated by the vertical isotropy coefficient Ayz ≈ 1.

3. Experimental results
3.1. Integral flow properties

As a first step, the influence of the magnetic field at six Hartmann numbers, including
OHD flow, on the integral flow properties is investigated in a test series with increasing
heating power at fixed steps in the range 200 < P < 7200 W. The Hartmann numbers
M and the approximate magnitudes of the magnetic field B are summarized in table 1.

If not mentioned otherwise, the experimental results are presented in dimensionless
form by using the width of the gap b, the temperature difference across the layer ∆T ,
the thermal diffusion time t0 = b2/κ and its inverse f0 = 1/t0 as scales for length,
temperature, time and frequency.
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M 0 100 200 400 800 1600
B [T ] 0 0.07 0.15 0.29 0.58 1.16
Rat – – – 1× 104 4× 104 8× 104

Table 1. Hartmann numbers M, approximate magnitude of the applied magnetic field B and
critical Rayleigh number Rat for the onset of time-dependent flow.
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Figure 4. Nusselt numbers Nu versus Rayleigh numbers Ra for OHD flow (open circles) and
MHD flows (solid symbols).

The Nusselt numbers obtained are plotted versus the Rayleigh numbers in figure 4.
Consider first the case of OHD flow (M = 0) denoted by the open circles. For
the lowest heating power P = 200 W a temperature difference across the layer of
∆T = 1.35 K corresponding to a Rayleigh number of Ra = 1789.6 is obtained. Based
on the results by Vest & Arpaci (1969) and Bergholz (1977) we may assume that
a multicellular secondary flow exists. However the convective velocities are low and
the heat transfer is close to the state of pure heat conduction. Starting from this
point, the Nusselt number increases continuously with increasing Rayleigh number.
For high Rayleigh numbers a scaling law Nu = 0.15×Ra0.23±0.02 is valid in the range
104 < Ra < 105, which is plotted as a dashed line in figure 4. When a magnetic field is
applied one could expect a general decrease of the convective heat transport because
of the damping effect of Joule dissipation. However, this is not observed in general.
All measured Nusselt numbers for M = 100 and M = 200 are higher than for the
OHD flow. For M = 400 the Nusselt numbers at low Rayleigh number are lower
than those for OHD flow but are greater for Ra & 104. Then, for the high Hartmann
numbers M = 800 and M = 1600 the convective heat transfer is significantly reduced
compared to OHD flow in the whole range of Rayleigh numbers investigated here.
This demonstrates the existence of the two opposing effects of the magnetic field
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Figure 5. Variances of temperature T ′2P recorded by the probe for OHD flow (open circles) and
MHD flows at different Hartmann numbers M (solid symbols).

on the convective heat transport, namely the formation of strongly non-isotropic
structure on the one hand, and Joule dissipation on the other.

It should be mentioned that the Nusselt numbers Nu < 1 plotted in figure 4 are in
principle non-physical because they would indicate less heat transport than in the case
of pure heat conduction. Since the applied heat flux q and the temperature difference
∆T used in the calculation of Nu from equation (3) are determined with much higher
accuracy than would explain such large errors the deviation from Nu = 1 most
probably results from errors in the values for the temperature-dependent thermal
conductivity λ of the NaK test fluid used for the evaluations.

The next question addressed is whether the flow is stationary or time-dependent
and how strong are the fluctuations in the time-dependent regime. This information

is obtained from the variance of the temperature signal T ′2P of the probe. It is plotted
in figure 5 as a function of Rayleigh number. The solid line scaling as Ra−2 is the
level of noise, which is determined separately from thermally neutral instrumentation
tests. For states below this line the flow is considered to be stationary whereas time-
dependent flow is assumed for values above. For OHD flow as well as for MHD flow
at Hartmann numbers M = 100 and M = 200 all variances are significantly higher
than the noise level and the flow is therefore considered to be time-dependent even
for the lowest Rayleigh numbers. At higher Hartmann numbers M = 400, M = 800

and M = 1600 the values of T ′2P emerge from the noise level at some critical Rayleigh
number and a critical Rayleigh number for the onset of time-dependent flow Rat can
be associated with the location of branching from the measurements. The obtained
values are compiled in table 1. The variances, i.e. the temperature fluctuations for
the smaller magnetic fields M 6 200, significantly exceed the values obtained for
OHD flow especially at Rayleigh numbers Ra > 2 × 104 in spite of the presence
of Joule dissipation. Thus, depending on its strength, the magnetic field is able to
either enhance fluctuations of the velocity and the temperature fields or on the
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contrary to suppress time-dependent flow resulting in a stationary flow. The large
scatter of data, which becomes more pronounced at higher Hartmann numbers, most
probably results from several bifurcations of the convective flow in the transition
regime from stationary to strongly time-dependent flow. A systematic investigation of
this phenomenon was not performed in these experiments.

Many heat transfer problems are defined with constant heat fluxes at the boundaries
(q = const). This situation can be rendered by a constant product of Rayleigh and
Nusselt numbers, i.e. Ra×Nu = const. In figure 6(a) the Nusselt numbers are plotted
versus the square root of the Hartmann number M1/2 for different values of the
applied heat flux. The Nusselt numbers increase from the values of OHD flow to
a maximum value which is obtained in the range 10 < M1/2 < 15 with a tendency
of higher Hartmann numbers at larger heat fluxes. From this maximum value the
Nusselt numbers decrease monotonically to values close to Nu = 1 for increasing
Hartmann numbers. In table 2 the heat flux and the corresponding Ra × Nu values
are listed. They allow calculation of the corresponding Rayleigh numbers from the
Nusselt numbers given in figure 6(a). It is obvious from table 2 that the temperature
difference or Rayleigh number decreases if the Nusselt number is increased at some
fixed heat flux.

In figure 6(b) the variances of temperature fluctuations T ′2P , measured by the probe,
are plotted. For Hartmann numbers M . 400 the variance values indicate strong
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q [W m−2 × 104] 1.0 2.1 2.8 4.2 6.2 8.3
Ra×Nu [104] 1.15 2.41 3.27 5.00 7.36 10.02

Table 2. Heat fuxes q and corresponding values of RaNu.
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time-dependent motion. For higher Hartmann numbers the variances drop abruptly
by several orders of magnitude indicating a stationary flow for Hartmann numbers
M & 400. Considering the Nusselt numbers and variances in figures 6(a) and 6(b) we
find on the right-hand side of the dashed line significant convective heat transfer in
an extended region of stationary flow.

In the time-dependent region for M < 400 we used the capability of the probe
to measure fluctuations of the temperature gradient also and calculate the isotropy
coefficients defined from equation (7). In figures 7(a) and 7(b) the two transversal
coefficients Axy and Axz are plotted versus the square root of the Hartmann number
M1/2 at constant heat flux q. Figure 7(c) shows the vertical coefficient Ayz obtained
in the plane perpendicular to the magnetic field. First we consider the case M = 0 of
OHD flow. Both transversal coefficients Axy and Axz are larger than one and therefore
indicate stronger fluctuations in the x-direction. The vertical coefficient Ayz indicates
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much less intensive fluctuations in the direction of the heat flux compared to the
vertical direction. However, as the heat flux increases the flow proceeds to a state
of higher local isotropy indicated by the tendency of Ayz to approach the value 1.
Next we consider the case of MHD flow. Above M1/2 & 6 both transversal isotropy
coefficients start to decrease strongly and at M1/2 & 10 level off to plateau values more
than an order of magnitude lower than in the case of no magnetic field. This indicates
the formation of significant local non-isotropy implying weaker fluctuations in the
direction of the magnetic field and time-dependent convective vortices whose axes
are predominantly aligned with the direction of the magnetic field. This transition
corresponds to the region of increasing Nusselt numbers seen in figure 6(a) and we
suggest that this mechanism is responsible for the enhanced convective heat transport.
Above M1/2 & 10, non-isotropy is maintained, but the Joule dissipation becomes more
and more dominant and leads to a decrease of the Nusselt numbers.

The vertical isotropy coefficient Ayz plotted in figure 7(c) increases considerably
with M. Thus we can conclude that at strong enough magnetic fields the flow becomes
more isotropic in the plane perpendicular to its direction. For all M there is a strong
tendency towards higher isotropy in the plane perpendicular to the magnetic field as
the heat flux is increased.

The next question is how the magnetic field changes the global flow structure. From
two of the thermocouples embedded in the heated wall, TO,l and TW,l (see figure 3)
we calculate the parameter γ = (TO,l − TW,l)/(5∆T ) as an estimate of the relative
vertical temperature gradient. The result for a fixed heat flux of q = 4.2× 104 W m−2

is plotted in figure 8 versus the square root of the Hartmann number M1/2. The
Rayleigh numbers in this experiment are in the range 3.0× 104 < Ra < 5.0× 104.
Under OHD conditions we find a significant vertical temperature gradient, indicating
that there is a considerable heat transport by a large-scale convection extending from
top to bottom of the slot. Nevertheless, there may be smaller-scale flow structures.
The contribution of the large-scale transport is more significant for the smallest
Hartmann number M1/2 = 4.5 but as M is increased up to M1/2 ≈ 15 the vertical
temperature gradient is continuously decreased. From this we infer that the large-
scale recirculation becomes suppressed and the multicellular motion becomes more
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important for the heat transport at higher magnetic fields. In the transition region
from time-dependent to stationary flow, 15 < M1/2 < 20, γ increases again suggesting
a collapse of the multicellular pattern due to the reduced convective velocities and
the formation of a unicellular convective motion as is known in OHD flow for small
Rayleigh numbers in the primary flow region. In the stationary regime γ decreases
monotonically with M, indicating that heat transport is increasingly dominated by
conductive transport.

3.2. Temporal characteristics

Next we analyse the structure of the time-dependent signals obtained by the probe.
Measurements were performed at a constant Rayleigh number Ra = 4.0× 104 and
for Hartmann numbers M = 0, M = 100, M = 200 and M = 400. In figure 9(a–d )
the time series are plotted. For OHD flow (M = 0) there is a typical turbulent signal
characterized by random fluctuations of different time scales. When a magnetic field
corresponding to M = 100 and M = 200 was applied the amplitudes of fluctuations
were increased considerably. Moreover, the signals show fluctuations of longer time
scales. Finally at M = 400 there is stationary flow. These findings are reflected well in
the phase-averaged power spectra S of the temperature signals plotted in figure 10(a).
Under MHD conditions the contribution of frequencies above f ≈ 4 to the fluctuating
intensity is significantly reduced whereas contributions below f ≈ 4 are significantly
enhanced compared to OHD convection. This power shift from higher to lower
frequencies within the overall spectrum can be associated with the formation of
motions with larger spatial scale under the influence of the magnetic field, provided
that the Taylor hypothesis is valid. It is caused by the reduction of three-dimensional
nonlinearities in the locally non-isotropic flow caused by the magnetic field. The
spectra of OHD flow as well as those of MHD flow decay in the high-frequency
range as f−4. Similar scaling has been observed in liquid metal Rayleigh–Bénard
convection under OHD conditions by Horanyi, Krebs & Müller (1999) and by
Kishida & Takeda (1994) in the case of a strong applied magnetic field. The insets

in figure 10(a), i.e. figures 10(b) and 10(c), show the corresponding variances T ′2P and
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Figure 10. (a) Phase-averaged power spectra S of temperature fluctuations T ′P recorded by the
probe at Ra = 4.0×104 for OHD flow (M = 0) and for Hartmann numbers M = 100 and M = 200.

(b) Variance T ′2 and (c) Nusselt number Nu as a function of the square root of Hartmann
number M1/2.

the Nusselt numbers Nu. It is obvious that the change in the convective structure
accompanies an enhancement of the fluctuating intensity as well as the convective
heat transfer.

An intuitive picture of the isotropy properties of the velocity field is obtained
from the scatter plots of the two-dimensional temperature gradient vectors ∇ijT ′P =
(∂iT

′
P , ∂jT

′
P ) which are plotted in figure 11(a–l ) for the same data as shown in

figure 9(a–d ). The first two columns show the scatter plots in the transversal x-
direction, aligned with the magnetic field, ∇xyT ′P and ∇xzT ′P , whereas the third column
shows the scatter in the vertical plane perpendicular to the magnetic field ∇yzT ′P . The
first row corresponds to M = 0 and the magnetic field is increased from top to bottom.

For OHD flow both scatter plots containing the transversal direction, i.e. fig-
ure 11(a, b), are characterized by an almost axisymmetric distribution of the gradient
vectors which can be associated with a high degree of isotropy in both planes. Un-
der the influence of the magnetic field fluctuations in the transversal direction are
considerably reduced. This is seen from figures 11(d ) and 11(e) for M = 100 and
figures 11(g) and 11(h) for M = 200 from the narrow band of the distributions of the
gradient vectors in the x-direction. Simultaneously, the fluctuations of the tempera-
ture gradients in directions not aligned with the magnetic field are enhanced and the
distributions become skewed in the negative y-direction and the positive z-direction,
respectively. In the plane perpendicular to the magnetic field the fluctuations of the
temperature gradients are not even isotropic for OHD flow (figure 11c). The dis-
tributions become skewed with respect to the negative y-direction and the positive
z-direction when a magnetic field is applied (figures 11f and 11i ). But even here a
tendency to higher isotropy in this plane is observed, consistent with the findings in
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Figure 11. Scatter plots of the two-dimensional temperature gradient vectors ∇ijT ′P = (∂iT
′
P , ∂jT

′
P ),

namely ∇xyT ′P (first column), ∇xzT ′P (second column) and ∇yzT ′P (third column). The first row
corresponds to M = 0 (a–c), the second to M = 100 (d–f ), the third to M = 200 (g–i ) and the
fourth to M = 400 (j–l ). All figures show the same range in both directions, −1.0 < ∂iT

′
P < 1.0.

figure 7(c). For M = 400 (figure 11j–l ) the flow is quasi-stationary as can be seen
also from figure 9(d ).

The discussion of local isotropy using the isotropy coefficients Aij defined by
equation (7) for regarding figure 7(a–c) can be extended into the frequency range.
Here we introduce the frequency-dependent spectral isotropy coefficient functions

Aij(f) =
Si(f)

Sj(f)
, (8)

where Si(f) are the components of the power spectra of the i-component of the spatial
derivative of the temperature field. In figures 12(a) and 12(b) the two transversal spec-
tral isotropy coefficient functions Axy and Axz are plotted for OHD flow (M = 0) and
MHD flows at M = 50 and M = 100. Figure 12(c) shows the corresponding vertical
coefficient functions. In conformity with figures 7(a) and 7(b) and the corresponding
diagrams in figure 11 the transversal isotropy coefficients are considerably decreased
by the magnetic field and thus indicate significant local non-isotropy. All measure-
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Figure 12. Spectral isotropy coefficient functions Aij(f) defined by equation (8) for OHD flow
(M = 0) and MHD flows at M = 100 and M = 200: (a, b) transversal coefficients Axy and Axz;
(c) vertical coefficient Ayz .

ments show higher isotropy at either higher frequencies or smaller length scales. This
is consistent with recent results obtained by Burr et al. (2000) in turbulent MHD
duct flow. Consistent with the findings in figure 7(c) the vertical isotropy property is
hardly affected by the magnetic field. The coefficients depend weakly on frequency in
the region 4 . f . 15 where fluctuations of high vertical isotropy, i.e. Ayz ≈ 1, are
observed.

Further information on the temporal structure of the flow is obtained from the
probability density functions (PDFs) of the probe signals. In figure 13(a–c) the PDFs
of the temperature fluctuations T ′P from the measurement series at Ra = 4.0 × 104

are plotted for OHD flow (M = 0) and the two Hartmann numbers M = 100 and
M = 200. The circles represent measured values whereas the solid lines are Gaus-
sian fitting curves. Under OHD conditions (figure 13a) the measured PDF of the
temperature fluctuations is represented well by the Gaussian fitting curve. As a mag-
netic field is applied the PDFs in figures 13(b) and 13(c) become much broader and
skewed, compared to those without magnetic field. This indicates more fluctuations
of higher amplitude in the case of MHD flow compared to OHD flow. Moreover,
the distributions of MHD flow deviate more strongly from a Gaussian distribution.

In table 3 the values of skewness S(TP ) = T ′3P /T ′2P
3/2

and flatness F(TP ) = T ′4P /T ′2P
2

of the temperature fluctuations are compiled. A Gaussian PDF is indicated by S = 0
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T ′P ∂xT
′
P ∂yT

′
P ∂zT

′
P

M S F S F S F S F
0 0.11 2.53 0.04 3.52 −0.58 3.33 0.80 4.17
100 −0.01 2.43 0.18 4.80 −0.58 3.52 1.27 4.95
200 −0.20 2.28 0.72 4.10 −0.50 3.24 0.88 3.50

Table 3. Skewness and flatness of the fluctuating parts of the temperature and temperature gradient
signals, T ′P and ∂iT

′
P respectively of the probe for a Rayleigh number Ra = 4.0× 104 and different

Hartmann numbers M.

0.12

0.08

0.04

0

–0.5 0 0.5
TP

′
–0.5 0 0.5

TP
′

–0.5 0 0.5
TP

′

(a) (b) (c)

P
D

F

Figure 13. Probability density functions (PDFs) of the temperature fluctuations T ′P of the probe.
At Ra = 4.0× 104 the Hartmann number is increased from (a) OHD flow at M = 0 to MHD flows
with (b) M = 100 and (c) M = 200. The circles are the measured PDFs and the solid lines are their
Gaussian fitting curves.

and F = 3 whereas S 6= 0 indicates a skewed distribution of fluctuations around the
mean and F < 3 or F > 3 indicate a flatter or peakier distribution than Gaussian. The
change in sign of S shows that the positively skewed distribution of T ′P for M = 0
changes to negative under the influence of the magnetic field. Indicated by F < 3, the
PDFs of both OHD and MHD flow are flatter than for a Gaussian distribution.

Similar considerations can be made for the level of temperature gradients recorded
by the probe. In figure 14(a–c) the PDFs of the fluctuating part of the temperature
gradient in the transversal direction ∂xT

′
P are plotted. Figures 14(d–f ) and 14(g–i )

show the same property in the horizontal y-direction ∂yT
′
P and the vertical z-direction

∂zT
′
P . The corresponding values of skewness and flatness are also compiled in table 3.

In the direction parallel to the magnetic field the PDF degenerates from its near-
Gaussian shape for OHD flow to a peak-like shape indicating less strong deviations
from the mean value. In the two directions perpendicular to the magnetic field
large fluctuations persist even at high magnetic fields and the PDFs remain broad.
Compared to the PDFs in the direction of the magnetic field, this again indicates
strong local non-isotropy.

In both directions y and z, the distributions of the temperature gradients are much
more skewed than the fluctuations of the temperature field itself. This is seen especially
in the PDFs in the z-direction and the corresponding large values of skewness factors
in table 3. As indicated by the flatness factors F > 3 fluctuations of the temperature
gradients in all directions are peakier than a Gaussian distribution, in contrast to
those of the temperature field which are determined to be flatter than a Gaussian
distribution. However, at the level of temperature gradients and for the parameters
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Figure 14. PDFs of the fluctuating parts of the temperature gradients recorded by the probe at
Ra = 4.0 × 104: (a–c) gradient in the transversal direction ∂xT

′
P , parallel to the magnetic field;

(d–f ) and (g–i ) gradients in the directions perpendicular to the magnetic field ∂yT
′
P and ∂zT

′
P . The

magnetic field is increased from OHD flow at M = 0 (a, d, g) to M = 100 (b, e, h) and M = 200
(c, f, i ) from left to right. The circles are the measured PDFs whereas the solid lines are their
Gaussian fitting curves.

investigated here a clear tendency of the magnetic field to produce non-Gaussian
PDFs, as observed for the temperature field, is only obtained in the z-direction.

4. Concluding remarks
Natural convection of an electrically well-conducting fluid in a tall vertical enclosure

is significantly influenced by a uniform horizontal magnetic field applied perpendicu-
larly to the horizontal temperature gradient. For the investigated range of Rayleigh
numbers 103 < Ra < 8.0× 104 the convective heat transport is significantly enhanced
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for Hartmann numbers M . 400, even compared to ordinary hydrodynamic (OHD)
flow. From estimates of the local isotropy properties of the flow using a four-element
temperature probe it can be demonstrated that strong local anisotropy is produced by
the magnetic field, consistent with the well-known tendency of vorticity lines to align
with the direction of the magnetic field. The reduced three-dimensional nonlinearities
of the locally non-isotropic flow favour the formation of larger-scale vortex structures
compared to OHD flow, which are more effective in convective heat transport. This
is demonstrated by a power shift from shorter to longer time scales in the power
spectra of temperature fluctuations when the magnetic field is imposed. Thus, the
damping effect of Joule dissipation on the convective motions is counterbalanced
by an ordering effect of the magnetic field which may dominate and improve heat
transfer rates.

At moderate Hartmann numbers the fluctuating intensities of MHD flows exceed
those of OHD flow but for Hartmann numbers beyond M ≈ 400 the flow becomes
stationary. Above this Hartmann number there is still significant convective heat
transport in stationary flow. Further increase of the Hartmann numbers leads to
suppression of the convective heat transfer and a state close to pure heat conduction
is approached.

Under OHD conditions a significant contribution from large-scale convection cov-
ering the total slot height to the heat transport is indicated by the formation of a
vertical temperature gradient in the gap. Under the influence of a not too small mag-
netic field this contribution is reduced, indicating that smaller structures become more
important for convective heat transport. As the flow proceeds from time-dependent
to stationary conditions the vertical stratification is increased, again suggesting a
breakdown of the multicellular flow pattern and formation of a unicellular motion.

The magnetic field causes the probability density function (PDF) of temperature
fluctuations to increasingly deviate from a distribution close to a Gaussian in the
absence of magnetic field. The deviations from the Gaussian behaviour are much
stronger for the fluctuations of temperature derivatives.

The results clearly show that the application of a horizontal magnetic field to
convective flows can be very helpful in the improvement of material processes. For
instance, a heat transfer enhancement may speed up the process or the generation
of stationary conditions with significant convective velocities will allow good mixing
of low-diffusive species under stationary conditions commonly not obtained in liquid
metal flows.

The authors are grateful to Professor U. Müller for initiating this research and
for valuable discussions and comments and to Mr K. J. Mack for excellent technical
support. This article is based on the master thesis of Dipl.-Ing. Paul Jochmann
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